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Abstract. We study scaling properties of the localized eigenstates of the random dimer model
in which pairs of local site energies are assigned at random in a one-dimensional disordered
tight-binding model. We use both the transfer matrix method and the direct diagonalization of
the Hamiltonian in order to find how the localization length of a finite sample scales with the
localization length of the infinite system. We derive the scaling law for the localization length
and show it to be related to scaling behaviour typical of uncorrelated band random matrix,
Anderson and Lloyd models.

1. Introduction

It is well known that in one-dimensional (1D) disordered models even small amounts of
disorder lead to an exponential localization of all eigenstates [1, 2]. On the other hand,
recent studies of quasi-1D polymers have shown that short-range correlations embedded in
a random sequence can lead to the appearance of fully transparent states [3, 4]. In [4] in
particular, various organic disordered systems with electrical properties were quoted. The
prototypical case is that of the random dimer model (RDM) [3, 4] where (in the context
of a tight-binding Hamiltonian) pairs of adjacent energy levels are assigned at random,
leading to two-site correlations in an otherwise random model. Since for infinite samples
fully delocalized states appear only for specific energy valuesEcr , there is no Anderson
transition in the usual sense (see also [5]). However, the number of transparent states for
finite samples was found to be proportional to the square root of the length of the sample
[3, 4]. This fact is related to the divergence of the localization length in infinite samples
when the energy approaches some critical values [6, 7, 8]. Therefore, these states may be
important for conducting properties of finite samples [9, 10].

In infinite samples the Anderson transition can be characterized in terms of the
localization length; the latter is commonly defined from the decay of amplitude of eigenstates
in the limit |n| → ∞, wheren is the site label in the tight-binding picture. Contrary to
what happens in infinite samples, the global properties of eigenstates of finite samples cannot
be characterized in the same way; one needs to use other quantities (such as the inverse
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participation ratio), that are valid for both finite and infinite samples. Then, through the
use of scaling conjectures, one can link the properties of eigenstates in infinite samples to
those in finite samples. In the theory of disordered solids, the scaling approach proved to
be extremely useful in describing the conductance and its fluctuations (see, e.g., [11, 12]).
A similar approach has been recently used in the theory of quantum chaos when describing
localized eigenstates random on a finite scale [13, 14]. Such eigenstates also arise in
the quasi-1D models with random potentials. Extensive numerical and analytical studies
(see, e.g., [15, 16] and references therein) have revealed remarkable scaling properties of
eigenstates, which seem to be of quite generic nature.

In this paper we study the RDM of finite size from the point of view of scaling properties
of its eigenstates. The question of the relevance of the above-mentioned results to models
with correlated disorder is far from being trivial since short-range correlations may cause
significant difference in the structure of eigenstates, when compared with those for random
potentials. In the next section we briefly describe the RDM and discuss different definitions
of localization length, which are used in our numerical simulations. In section 3 we present
numerical data on scaling properties of eigenstates in the centres of energy bands. In this
case, the localization length in infinite samples has been obtained by the transfer matrix
method. In section 4, we study the energy region near the critical valuesEcr by making
use of both numerical and analytical treatment of the localization length. Finally, in section
5 we give a short summary of our investigation.

2. A finite-size scaling approach to the random dimer model

Our starting point is the 1D Schrödinger equation in the tight-binding approximation

i
dcn(t)

dt
= εncn(t) + cn+1(t) + cn−1(t) (1)

wherecn(t) is the probability amplitude for an electron to be at siten andεn is the local site
energy. By making the transformationcn(t) = exp(−iEt)φn one can obtain the equation

Eϕn = ϕn+1 + εnϕn + ϕn−1 (2)

for the eigenvalueE and the corresponding eigenstateϕn(E). In what follows, we consider
the RDM [3, 8, 17] which implies short-range correlations in the sequence of randomεn.
In this model there are only two values ofεn, namelyεA or εB , that appear in pairs in the
sequence ofεn’s. In other words, in order to create the dimer chain, the pairs AA and BB
each with energiesεA, εB respectively are distributed at random. We take for simplicity the
probabilities of occurrence of the pairs to be equal, i.e.PAA = PBB = 1/2.

The RDM has been well studied for an infinite chain (see, e.g., [3, 5, 6, 7, 8, 17]).
Its basic feature is that for two values of the energyEcr = εA or εB its eigenstates are
extended. In the vicinity of these energies and forεA,B = |εA − εB | less than the critical
value εcr

A,B = 2, the localization lengthl∞ defined through the exponential decay of the
amplitude of the eigenfunction diverges asl∞(E) ∼ 1/E2 (for the specific valueεA,B = 2,
the singularity lawl∞(E) ∼ 1/E holds instead; see details in [6, 7, 8]). In spite of the fact
that for other values ofE inside the spectrum the localization length is finite, the influence
of nearly transparent states on the electronic properties of finite samples is strong (see,
e.g., [9, 10]). This is related to the fact that the number of eigenstates with localization
length larger than the sizeN of the sample is proportional to

√
N .

Our main interest is in the structure of the eigenstates for finite samples, both in the
centre of the energy band and in the vicinity of the critical energiesEcr where the localization
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length for the infinite sample diverges. Unlike in the simpler case of infinite samples, the
meaning of localization length for finite samples is not clear. Below, we follow the approach
developed in the theory of quasi-1D disordered solids which is based on the evaluation of
multifractal localization lengths (see, e.g., [15]). One of the commonly used quantities in
this approach is the so-called entropic localization length, defined through the information
entropyHN of eigenstates:

HN = −
N∑

n=1

wn ln wn wn = |ϕ2
n| (3)

where ϕn is the nth component of an eigenstate in a given finite basis. For eigenstates
normalized as

∑
n wn = 1, the simplest case ofϕn = N−1/2 results in the entropy being equal

to the maximum value, namelyHN = ln(N). We define therefore the localization lengthlN
as the number of basis states occupied by the eigenstateϕn; the latter is equal to exp(HN).
Similar definitions have been used for the first time in [18] where different characteristics
of eigenstates have been discussed in solid-state applications. One can see that in the other
limiting case of an exponentially localized state withϕn = l

−1/2
∞ exp(−|n − n0|/l∞), the

quantity lN is proportional tol∞; in fact lN ≈ el∞ (assumingl∞ � N ). One should note
that, in general, the amplitudesϕn fluctuate strongly withn and thus the coefficient of
proportionality betweenlN and l∞ depends on the type of fluctuation.

In order to study for the quasi-1D solids the properties of chaotic states, localized on
some scale in the finite basis it was suggested in [13, 14] that one could normalize the
localization lengthlN in such a way that in the extreme case of fully extended states the
quantity lN would be equal to the size of the basisN . In such an approach, the entropic
localization lengthl(1)

N is defined as

l
(1)
N = N exp(〈HN 〉 − Href ). (4)

In equation (4) the ensemble averaging〈. . .〉 is performed over the number of eigenstates
with the same structure. The normalization factorHref has the meaning of an average
entropy of the completely extended random eigenstates in the finite basis; therefore, it can
be easily found analytically [13]:

Href = ψ
(

N

2
+ 1

)
− ψ

(
3

2

)
≈ ln

(
N

2.07

)
(5)

where ψ is the digamma function and the distribution of componentsϕn is assumed to
correspond to the gaussian orthogonal ensemble (GOE). From equation (5) one can see
that for N � 1 the entropic localization length of random eigenstates, defined simply as
exp(Href ), is approximately 2.07 times less thanN ; this result is due to gaussian fluctuations
in the componentsϕn.

Analogously, the whole set of localization lengthsl
(q)

N can be defined in the following
way [15, 19]:

l
(q)

N = N

(
〈Pq〉
P

(q)

ref

)1/(1−q)

q > 2 (6)

where

Pq =
N∑

n=1

(wn)
q (7)

and P
(q)

ref is the average value ofPq for the reference ensemble of completely extended
states. One should note that for the particular caseq = 2 the quantityP2 is known as
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the participation ratio; it is widely used in solid-state physics. In the limiting case of the
GOE, one can find thatP (2)

ref = 3/N ; therefore, the inverse participation ratio(P2)
−1, which

is commonly taken as the definition of localization length, for random eigenstates is three
times less than the ‘actual’ lengthN .

In fact, the above expressions for the localization lengthsl
(q)

N are defined through the
2qth moments of a distribution of componentsϕn of eigenstates—not normalized toP (q)

ref ,
the quantities given by equation (6) are well known in the multifractal analysis of wave
functions. Such normalization turns out to be extremely important when establishing scaling
properties of eigenfunctions. Indeed, by normalizing the localization lengthsl

(q)

N to the size
N of the sample

βq = l
(q)

N

N
(8)

one can expect, in the spirit of renormalization theory, that the set of dimensionless
parametersβq is the proper entity to characterize generic properties of eigenstates for
finite samples. According to the scaling conjecture in the modern theory of disordered
solids, it was assumed [20] that for quasi-1D disordered models described by band random
matrices each quantityβq depends on the scaling parameterλ only, which is the ratio of the
localization lengthl∞ for the infinite sample to the sizeN of the sample itself. Therefore,
the scaling relation can be written as

βq = fq(λ) λ = l∞.

N
(9)

Detailed studies, both numerical and analytical, have confirmed this conjecture for different
models like the kicked rotator model and band random matrices (see, e.g., [14, 15, 16] and
references therein). Moreover, the scaling functionfq(λ) has also been found.

Our main question is whether a relation of the type of equation (9) is also valid for
our dimer model with the correlated disorder. The first nontrivial question arises about the
reference ensemble for the computation of the average entropyHref . Indeed, in application
to 1D Anderson-type models (see details in [21]), the reference ensemble cannot be chosen
as an ensemble of full random matrices, like the GOE. This point is related to the fact
that in the Anderson case fully extended states are not gaussian random functions but just
plane waves which arise for zero disorder. In the dimer model, the situation is even more
complicated due to strong dependence of the localization length on the energy. However,
and this is our expectation, in spite of the presence of the extended states at the critical
energies, scaling properties of the eigenstates in the dimer model of finite sizeN are of the
generic type discovered for 1D and quasi-1D disordered models.

For this reason and in the spirit of [21, 22], we define the normalization factorsHref

andP
(q)

ref from the solution of equation (2) for zero disorder,εn = 0:

Ek = 2 cos
kπ

N + 1
(10)

ϕk
n =

√(
2

N + 1

)
sin

nkπ

N + 1
(11)

with k, n = 1, . . . , N . The entropyHref of the above eigenfunctions in the large-N limit
has the same value for every eigenvalueEk, i.e.

Href = ln(2N) − 1 (12)
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and, correspondingly,

P
(2)
ref = 3

2N
. (13)

3. Scaling properties of localization lengths in the centres of energy bands

Since all results depend on the differenceεA,B = |εA − εB | but not on the actual values
of εA and εB separately, we can setεA = 0 for simplicity. One should stress that both
localization lengthsl∞ and l

(q)

N are functions of the energyE. For this reason, in our
numerical experiments we consider ensembles of states specified by the values of the energy
E in a small window1E and by different realizations of random on-site energiesεn. We
choose the size of the energy window in such a way that for every chosen value ofεB

the localization lengthl∞ is approximately constant inside this window (in all the cases
1l∞/l∞ 6 0.06 ).

In order to study scaling properties of the localized eigenstates we have used the transfer
matrix method for infinite chains as well as the direct diagonalization of the Hamiltonians
that one associated with equation (1), for finite chains of sizeN . To find the localization
length l∞ we have studied the asymptotic behaviour of the random matrix product

∏
Mn,

whereMn is defined through the relation

ξn+1 = Mnξn Mn =
(

vn −1
1 0

)
vn = E − εn (14)

for the vectorξn = (xn, xn−1) with the matrixMn known as the transfer matrix. Then the
localization lengthl∞ is the inverse Lyapunov exponentγ ; the latter is evaluated as the
exponential decay rate of an initial vectorξ1:

l−1
∞ = γ = lim

N→∞
1

N

(
ln

N∏
n=1

|Mnξn|
/|ξ1|

)
. (15)

Although the Lyapunov exponentγ for finite N depends on a particular realization of the
disorder, forN → ∞ it converges to its mean value. For the above calculations we have
used samples of length 5× 105 for relatively large values ofεB and up to 4× 106 for small
values ofεB .

To reveal scaling properties of the localization length for finite samples, we have
computed two localization lengthsl(1)

N and l
(2)
N according to the relations discussed in the

previous section, with the normalization factorsHref andP
(2)
ref given by equation (12) and

equation (13). In the computations of these lengths, the energy window was taken in the
centre of the spectrum, around the valueE = εB/2 for εB equal to 2, 1.8, 1.6, 1.2, 1, 0.8,
0.6, 0.4, 0.35 and for the fixed value ofN . The widths of the windows were numerically
chosen to provide a small change of localization length inside any of the windows. The
values ofβ1 andβ2 were obtained by the averaging over an ensemble of random samples
of sizeN = 100–800 for the values ofεB cited previously. As a result, the total numbers
of eigenstates in the energy windows were more than 1000.

All of the data were fitted to the scaling functionβq found for quasi-1D disordered
models [15]:

βq = cqλ

1 + cqλ
. (16)

In fact, this scaling relation is exact only forq = 2; however, for other cases of small
values ofq, includingq = 1, it is very close to the correct one (see details in [15]).
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Figure 1. Scaling ofβq as a function of the localization ratioλ = l∞/N for the RDM with
Q = 0.5 andεA = 0. The energiesE are taken in an energy window centred atE = εB/2 for
values ofεB = 2.0; 1.8; 1.6; 1.2; 1.0; 0.8; 0.6; 0.4; 0.35. Smooth curves correspond to the
dependence (16) withcq as a fitting parameter. (a) Scaling forβ1 with c1 = 2.80. (b) Scaling
for β2 with c2 = 1.55.

Numerical data reported in figure 1 give clear evidence of a scaling of the type described
by equation (16). The fitting parameterscq are equal toc1 = 2.80 andc2 = 1.55. From
this figure one can see that the behaviour ofβq is very different in the two limits of very
localized(βq � 1) and extended(βq ≈ 1) eigenstates. The dependence of equation (16)
has the remarkable property which can be seen in other variables:

Yq = ln

(
βq

1 − βq

)
X = ln

(
l∞
N

)
(17)

which are more convenient when considering the whole region of both very localized and
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Figure 2. The scaling ofβ1, β2 as a function ofλ = l∞/N in the variablesY1,2 and X (see
(17)) for the same values of the parameters as in figure 1. Straight lines (1) and (2) correspond
to expression (18) witha1 = 1.05; b1 = 1 anda2 = 0.45; b2 = 1 respectively.

extended states. Indeed, in these variables the scaling has an extremely simple form:

Yq = aq + bqX (18)

with bq = 1 andaq = ln(cq). The data for the scaling in variablesY, X are presented in
figure 2. The fitting parametersb1,2 are found to be quite close to 1, i.e.b1 = 1.02 and
b2 = 0.98; for this reason in figure 2 we putb1 = b2 = 1. The remarkable result is that
the above simple scaling relation holds over a very large region of the scaling parameter
λ = l∞/N . According to the fit to the dependence of equation (18), the valuesa1,2 are
a1 = 1.05 anda2 = 0.45, which gives1a1,2 = a1 − a2 = 0.6. It is very interesting that
these values ofa1,2 are the same as for the common Anderson model [22] in the centres
of energy bands. This fact is very important in establishing the link between the RDM and
Anderson models of finite size.

It is of special interest to relate the entropy localization lengthl
(1)
N and the localization

length l
(2)
N associated with the inverse participation ratio. Their interdependence is shown

in figure 3. We see that they are approximately equal for very localized and very extended
states. It is also clear thatβ2 is always less thanβ1 sinceP

(q)

N < P
(q+1)

N , due to the definition
of equation (7). Using the definition of equation (16) one can find the relation betweenβ1

andβ2:

β2 = cβ1

1 + (c − 1)β1
c = c2

c1
. (19)

4. Scaling of localization lengths near the critical energies

In the previous section we have shown that the scaling law of equation (16), found for
fully disordered 1D and quasi-1D models, also holds in our dimer model of finite size
when considering eigenstates in the centres of energy bands. In a sense, this property may
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Figure 3. A plot of β2 as a function ofβ1. It is interesting to note that the fitting curve has the
same form (19) as the ones for the case ofβ1,2 plotted in figure 1 as a function ofλ = l∞/N .

be expected, since far from critical energies where the localization length diverges, the
eigenstates are assumed to be similar to that known for disordered models. The important
question is whether or not this scaling holds for all energies inside the band—in particular,
near the critical energiesEcr = εA, εB . Direct numerical computation of the localization
length l∞ through the transfer matrix method is very difficult in this energy region due to
very weak convergence of Lyapunov exponents. For this reason, we have used the analytical
expression which was derived forl∞ near the critical energies in an approach developed
in [8]:

l∞(E) ≈ 2 sin2µ0

Qδ2 cos2µ0
2 cosµ0 = E. (20)

Here, the factorQ stands for the probability for the pairεn = εn+1 = εB to appear, and
δ is defined by the relationE = εB − δ ≈ εB [23]. We recall that in our caseQ = 1/2
andεA = 0 have been assumed for simplicity. From equation (20) one can find that if the
value of εB is far from the stability borderEB = 2, and the distance1 = 2 − εB is large
compared toδ = εB − E, the localization length diverges as

l∞ ≈ 21

Qδ2
δ � 1 � 1. (21)

In the other limit case ofεb = 2 we have

l∞ ≈ 2

Qδ
δ � 1, 1 = 0. (22)

It is interesting to note that the same expressions, equations (21) and (22), are obtained in
[17] by assuming that localization lengthl∞ is determined by the reflection coefficient from
a single pairεn = εn+1, embedded in a perfect lead. It is of interest to check how accurate
estimates found in [8] and [17] are, and if one can apply them for any energy inside the
band.
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Figure 4. As in figure 1, but for energies close to the critical one(Ecr = εB), for q = 1 (a)
andq = 2 (b). The values ofεB are taken asεB = 1.8; 1.6; 1 .4; 1.2; 1.0.

To find the localization lengthsl(1)
N and l

(2)
N for finite samples of sizeN , we have used

the same approach as described in the previous section, by examining the eigenstates with
energies in a small energy window1E 6 10−2Ecr near the critical energyEcr = εB . Yet,
since, in the region of critical energies,l∞(E) and thus also the localization properties of
eigenstates depend on the energy in a singular way (see equation (21) and equation (22)),
we took from the energy window only the eigenvector with the corresponding eigenstate
which is closer toEcr (but always different from it,E 6= Ecr ). This was a natural choice for
studying statistical properties of eigenstates with similar localization properties (i.e. just
the eigenstates near the totally extended one). The average values ofl

(q)

N were obtained by
statistically averaging over an ensemble of more than 3000 samples of sizeN = 100–800
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with different pair-correlated disorder. The results are reported in figure 4 together with a
fit to equation (16). One can see a quite good scaling of the form of equation (16), in spite
of fluctuations which are much larger in this energy region compared to those in the centres
of bands. The fitting coefficientsc1 = 2.20 andc2 = 1.06 are slightly less than those in
the band centres. This fact may be explained by the approximate character of the analytical
expression in equation (20) (one should also note that for the values ofβq very close to the
limit βq = 1 the computational errors are very large).

Figure 5. As figure 2, but for the parameters of figure 4. Straight lines (1) and (2) correspond
to expression (18) witha1 = 0.75; b1 = 1 anda2 = 0.08; b2 = 1 respectively.

In figure 5 the same data are represented in the variables of equation (17), with the fit
corresponding to the dependence given by equation (18). It is interesting that in spite of
a slight difference for the coefficientsa1 = 0.75 anda2 = 0.08 in comparison to those
found in the centres of bands, the shift1a1,2 = a1 − a2 = 0.67 remains almost the same
(compared to 0.6).

5. Summary

We have studied a 1D tight-binding model with binary on-site disorder that is randomly
assigned at every pair of sites. For such a model we know that there exist two special
energiesEcr at which transparent states appear [3, 6, 7, 8]. For other energies—but close
to critical ones—the localization length is very large, leading to nearly transparent states
that are of great importance in the conducting properties of finite samples. This property is
quite different from that of genuine disordered models of Anderson type.

Our numerical study of random dimer models of finite size deals with the scaling
properties of the eigenstates. This study was motivated by the remarkable scaling law that
has been found for different 1D and quasi-1D models, both dynamical (the kicked rotator
on a torus [13, 14]) and disordered (1D Anderson and Lloyd models [21, 22] and quasi-1D
models [15, 20]). These latter results indicate that eigenstates in finite samples with disorder
have generic properties, regardless of the details of the disorder.
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The main result of our computations is that scaling properties of eigenstates of finite
dimers are of the same type as for the disordered models mentioned above in spite of the
existence of nearly transparent states. In particular, both the entropy localization length and
the localization length from the inverse participation ratio normalized in the proper way
follow the universal scaling law of equation (16).

The scaling relation of equation (16) can be also represented in a very intriguing form
[21, 22, 24]:

1

l
(q)

N (ε, E)
= 1

l
(q)
∞ (ε, E)

+ 1

l
(q)

N (0, E)
(23)

which still has no physical basis. In equation (23),l
(q)

N (ε, E) represents the localization
length for a finite sample and finite disorder,l

(q)
∞ (ε, E) is the localization length for an

infinite sample with the same disorder andl
(q)

N (0, E) is the localization length for a finite
sample with zero disorder. One should stress that all three localization lengths are defined
in the same way, given through expressions of equations (6) and (7). One can see that
the form of equation (23) is parameter independent; the same form holds also for the 1D
Anderson and Lloyd models (see [21, 22]).

In our numerical study the energy window has been chosen in the middle of the spectrum
as well as close to the critical energy, giving the same scaling form—equation (16). The
slight difference in the coefficientscq for these two energy regions seems to indicate
that the analytical expression equation (20) needs some correction related to an additional
dependence on the energy when the latter is not close enough to the critical one. Our results
indicate that the same scaling is expected to hold for other values of the energy inside the
band. One should note that the scaling given by equation (16) (or, equally, equation (23))
can be used to check the accuracy of expressions for the localization lengthl∞ as regards
the dependence of the parametersE and εb, if for some values of these parameters the
scaling functionβq is found with a high accuracy.

It is of interest to check the scaling behaviour of localization lengths corresponding
to the higher momentsq > 3 in equation (6). Analytical treatments [15] for disordered
models have shown that the scaling law given by equation (16) holds approximately for
higher moments also. The correct expression forβq(λ) is known only in the limit case of
very localized(λ � 1) and extended(λ � 1) states. It has the same form as equation (18)
with bq = 1 but with different values ofaq in these limits (see details in [15]). On the
basis of our results forq = 1, 2, it is quite natural to expect that for the dimer model
the correspondence to the analytical predictions [15] should also hold for higher moments;
however, this question remains open. One should note that fluctuations of localization
lengthslq increase very substantially with increasingq; this leads to serious computational
problems.

Finally, we should comment that the results obtained in the present work can be
generalized to cases with correlation blocks larger than dimers, namelym-blocks with
m = 3, 4, 5, . . .. In these more general cases the following surprising result holds: given
an arbitrary distribution of correlated blocks withevenlength, i.e. an arbitrary distribution
of dimers, tetramers, hexamers, octamers, etc, with the same energyε, that populate a
lattice with sites that have some other energy value, there is always a resonant energy
Ecr = ε that corresponds to a delocalized state. This result can be easily deduced from
the general expressions of [8]. On physical grounds, we expect the localization properties
of the eigenstates of this system to follow similar scaling laws to the ones derived in the
present work.



2834 F M Izrailev et al

Acknowledgments

One of the authors (FMI) wishes to acknowledge the support of Grant ERBCHRXCT
930331 for the Human Capital and Mobility Network of the European Community and
also the support of Grant No RB7000 from the International Science Foundation. TK
acknowledges the support of Grant CHRX-CT93-0107 and also wishes to thank Professor
R Livi for his kind hospitality. We thank Paolo Grigolini, Bruce J West and C M Soukoulis
for discussions.

References

[1] Anderson P W 1958Phys. Rev.109 1492
[2] Economou E N 1979Green’s Functions in Quantum Physics (Springer Series in Solid State Physics 7)(Berlin:

Springer)
[3] Dunlap D, Wu H-L and Phillips P 1990Phys. Rev. Lett.65 88
[4] Phillips P and Wu H-L 1991Science252 1805
[5] Gangopadhyay S and Sen A K 1992 J. Phys.: Condens. Matter4 9939
[6] Flores J C 1989J. Phys.: Condens. Matter1 8471
[7] Bovier A 1992J. Phys. A: Math. Gen.25 1021
[8] Izrailev F M, Kottos T and Tsironis G P 1995Phys. Rev.B 52 3274
[9] Datta P K, Giri D and Kundu K 1993Phys. Rev.B 47 10 727

[10] Datta P K, Giri D and Kundu K 1993Phys. Rev.B 48 16 347
[11] Abrahams E, Anderson P W, Licciardello D C and Ramakrishnan T V 1979Phys. Rev. Lett.42 673
[12] Pichard J L 1986J. Phys. C: Solid State Phys.19 1519
[13] Casati G, Guarneri I, Izrailev F M and Scharf R 1990Phys. Rev. Lett.64 5
[14] Izrailev F M 1990Phys. Rep.196 299
[15] Fyodorov Y V and Mirlin A D 1994 Int. J. Mod. Phys.8 3795
[16] Izrailev F M 1995Chaos, Solitons Fractals5 1219

Fyodorov Y V and Mirlin A D 1994 Int. J. Mod. Phys.8 3795
[17] Evangelou S N and Wang A Z 1993Phys. Rev.B 47 13 126
[18] Papatriantafillou C and Economou E N 1976Phys. Rev.B 13 920
[19] Evangelou S N and Economou E N 1991Phys. Lett.151A 345
[20] Casati G, Molinari L and Izrailev F M 1990Phys. Rev. Lett.64 1851
[21] Casati G, Guarneri I, Izrailev F, Fishman S and Molinari L 1992J. Phys.: Condens. Matter4 149
[22] Molinari L 1993 J. Phys.: Condens. Matter5 L319
[23] We have corrected the coefficient in equation (20) by including a factor of 2 as compared to the coefficent

in [8].
[24] Fyodorov Y V and Mirlin A D 1992Phys. Rev. Lett.69 1093


