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Abstract. We study scaling properties of the localized eigenstates of the random dimer model
in which pairs of local site energies are assigned at random in a one-dimensional disordered
tight-binding model. We use both the transfer matrix method and the direct diagonalization of
the Hamiltonian in order to find how the localization length of a finite sample scales with the
localization length of the infinite system. We derive the scaling law for the localization length
and show it to be related to scaling behaviour typical of uncorrelated band random matrix,
Anderson and Lloyd models.

1. Introduction

It is well known that in one-dimensional (1D) disordered models even small amounts of
disorder lead to an exponential localization of all eigenstates [1, 2]. On the other hand,
recent studies of quasi-1D polymers have shown that short-range correlations embedded in
a random sequence can lead to the appearance of fully transparent states [3, 4]. In [4] in
particular, various organic disordered systems with electrical properties were quoted. The
prototypical case is that of the random dimer model (RDM) [3, 4] where (in the context
of a tight-binding Hamiltonian) pairs of adjacent energy levels are assigned at random,
leading to two-site correlations in an otherwise random model. Since for infinite samples
fully delocalized states appear only for specific energy valligs there is no Anderson
transition in the usual sense (see also [5]). However, the number of transparent states for
finite samples was found to be proportional to the square root of the length of the sample
[3, 4]. This fact is related to the divergence of the localization length in infinite samples
when the energy approaches some critical values [6, 7, 8]. Therefore, these states may be
important for conducting properties of finite samples [9, 10].

In infinite samples the Anderson transition can be characterized in terms of the
localization length; the latter is commonly defined from the decay of amplitude of eigenstates
in the limit |n] — oo, wheren is the site label in the tight-binding picture. Contrary to
what happens in infinite samples, the global properties of eigenstates of finite samples cannot
be characterized in the same way; one needs to use other quantities (such as the inverse
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participation ratio), that are valid for both finite and infinite samples. Then, through the
use of scaling conjectures, one can link the properties of eigenstates in infinite samples to
those in finite samples. In the theory of disordered solids, the scaling approach proved to
be extremely useful in describing the conductance and its fluctuations (see, e.g., [11, 12]).
A similar approach has been recently used in the theory of quantum chaos when describing
localized eigenstates random on a finite scale [13, 14]. Such eigenstates also arise in
the quasi-1D models with random potentials. Extensive numerical and analytical studies
(see, e.g., [15, 16] and references therein) have revealed remarkable scaling properties of
eigenstates, which seem to be of quite generic nature.

In this paper we study the RDM of finite size from the point of view of scaling properties
of its eigenstates. The question of the relevance of the above-mentioned results to models
with correlated disorder is far from being trivial since short-range correlations may cause
significant difference in the structure of eigenstates, when compared with those for random
potentials. In the next section we briefly describe the RDM and discuss different definitions
of localization length, which are used in our numerical simulations. In section 3 we present
numerical data on scaling properties of eigenstates in the centres of energy bands. In this
case, the localization length in infinite samples has been obtained by the transfer matrix
method. In section 4, we study the energy region near the critical vadlyeby making
use of both numerical and analytical treatment of the localization length. Finally, in section
5 we give a short summary of our investigation.

2. A finite-size scaling approach to the random dimer model

Our starting point is the 1D Sobdinger equation in the tight-binding approximation
de, (1)
dr

wherec, (¢) is the probability amplitude for an electron to be at sitende, is the local site
energy. By making the transformatief(r) = exp(—i Et)¢, one can obtain the equation

[ = 6ncn(t) + Cn+1(f) + Cn—l(t) (1)

E(pn = Qut1t+ €100 + On-1 (2)

for the eigenvalu& and the corresponding eigenstatgE). In what follows, we consider
the RDM [3, 8, 17] which implies short-range correlations in the sequence of raggdom
In this model there are only two values ©f, namelye, or eg, that appear in pairs in the
sequence of,’s. In other words, in order to create the dimer chain, the pairs AA and BB
each with energies,, ¢p respectively are distributed at random. We take for simplicity the
probabilities of occurrence of the pairs to be equal, Pg4s = Ppp = 1/2.

The RDM has been well studied for an infinite chain (see, e.g., [3, 5, 6, 7, 8, 17]).
Its basic feature is that for two values of the enelfly = €, or ¢p its eigenstates are
extended. In the vicinity of these energies and 4@z = |e4 — €5| less than the critical
value e ; = 2, the localization lengtfi., defined through the exponential decay of the
amplitude of the eigenfunction divergesias(E) ~ 1/E? (for the specific value, 5 = 2,
the singularity lawi,, (E) ~ 1/E holds instead; see details in [6, 7, 8]). In spite of the fact
that for other values of inside the spectrum the localization length is finite, the influence
of nearly transparent states on the electronic properties of finite samples is strong (see,
e.g., [9, 10]). This is related to the fact that the number of eigenstates with localization
length larger than the siz&¥ of the sample is proportional t¢/N.

Our main interest is in the structure of the eigenstates for finite samples, both in the
centre of the energy band and in the vicinity of the critical enerfjigsvhere the localization
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length for the infinite sample diverges. Unlike in the simpler case of infinite samples, the

meaning of localization length for finite samples is not clear. Below, we follow the approach

developed in the theory of quasi-1D disordered solids which is based on the evaluation of
multifractal localization lengths (see, e.g., [15]). One of the commonly used quantities in

this approach is the so-called entropic localization length, defined through the information
entropyH of eigenstates:

N
7_(N = - an In Wy, w, = |903| (3)
n=1

where ¢, is the nth component of an eigenstate in a given finite basis. For eigenstates
normalized a§", w, = 1, the simplest case ¢f, = N~/ results in the entropy being equal

to the maximum value, namel{y = In(N). We define therefore the localization lendth

as the number of basis states occupied by the eigengtathe latter is equal to expiy).

Similar definitions have been used for the first time in [18] where different characteristics

of eigenstates have been discussed in solid-state applications. One can see that in the other
limiting case of an exponentially localized state with = 12 exp(—|n — nol/lx), the
qguantity [y is proportional tol; in fact Iy =~ el,, (assuming,, <« N). One should note

that, in general, the amplitudes, fluctuate strongly withn and thus the coefficient of
proportionality betweery andl,, depends on the type of fluctuation.

In order to study for the quasi-1D solids the properties of chaotic states, localized on
some scale in the finite basis it was suggested in [13, 14] that one could normalize the
localization lengthly in such a way that in the extreme case of fully extended states the
quantity [y would be equal to the size of the bag¥s In such an approach, the entropic
localization length}’ is defined as

IV = N exp((Hy) — Hrep)- @

In equation (4) the ensemble averagifg.) is performed over the number of eigenstates
with the same structure. The normalization factds., has the meaning of an average
entropy of the completely extended random eigenstates in the finite basis; therefore, it can
be easily found analytically [13]:

o a(3 ) +(3) 0 ()

where Y is the digamma function and the distribution of componepisis assumed to
correspond to the gaussian orthogonal ensemble (GOE). From equation (5) one can see
that for N > 1 the entropic localization length of random eigenstates, defined simply as
exp(H,.r), is approximately D7 times less thatv; this result is due to gaussian fluctuations
in the componentsy,.

Analogously, the whole set of localization Iengﬂﬁ‘,@ can be defined in the following

way [15, 19]:
1/(1-q)
P
19 =N <<(‘;z> g=2 (6)
ref
where
N
Pq = Z(wn)q (7)
n=1

and P“) is the average value oP, for the reference ensemble of completely extended
states. One should note that for the particular case 2 the quantityP, is known as
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the participation ratio; it is widely used in solid-state physics. In the limiting case of the
GOE, one can find tha&’rf} = 3/N; therefore, the inverse participation ratiB,) %, which
is commonly taken as the definition of localization length, for random eigenstates is three
times less than the ‘actual’ length.

In fact, the above expressions for the localization Iengjﬁsare defined through the
2qth moments of a distribution of componenis of eigenstates—not normalized (j;,
the quantities given by equation (6) are well known in the multifractal analysis of wave
functions. Such normalization turns out to be extremely important when establishing scaling
properties of eigenfunctions. Indeed, by normalizing the localization Ienlﬁfhm the size
N of the sample

1y
By = N (8)

one can expect, in the spirit of renormalization theory, that the set of dimensionless
parametersg, is the proper entity to characterize generic properties of eigenstates for
finite samples. According to the scaling conjecture in the modern theory of disordered
solids, it was assumed [20] that for quasi-1D disordered models described by band random
matrices each quantit§, depends on the scaling parameteonly, which is the ratio of the
localization lengthl,, for the infinite sample to the siz®¥ of the sample itself. Therefore,
the scaling relation can be written as

oo

loo.
,Bq = fq()\) A= W (9)

Detailed studies, both numerical and analytical, have confirmed this conjecture for different
models like the kicked rotator model and band random matrices (see, e.g., [14, 15, 16] and
references therein). Moreover, the scaling functjfgr) has also been found.

Our main question is whether a relation of the type of equation (9) is also valid for
our dimer model with the correlated disorder. The first nontrivial question arises about the
reference ensemble for the computation of the average enttppy Indeed, in application
to 1D Anderson-type models (see details in [21]), the reference ensemble cannot be chosen
as an ensemble of full random matrices, like the GOE. This point is related to the fact
that in the Anderson case fully extended states are not gaussian random functions but just
plane waves which arise for zero disorder. In the dimer model, the situation is even more
complicated due to strong dependence of the localization length on the energy. However,
and this is our expectation, in spite of the presence of the extended states at the critical
energies, scaling properties of the eigenstates in the dimer model of finit® sire of the
generic type discovered for 1D and quasi-1D disordered models.

For this reason and in the spirit of [21, 22], we define the normalization fa¢{prs

and P,(Z} from the solution of equation (2) for zero disordef,= 0:

k
EF = 2cos— %
N+1

(10)

2 nkm
k .
= sin 11
n (N + 1) N+1 (11)

with k,n = 1,..., N. The entropyH,., of the above eigenfunctions in the largedimit
has the same value for every eigenvalifg i.e.

Hyer = IN2N) — 1 (12)
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and, correspondingly,

Po = . (13)

3. Scaling properties of localization lengths in the centres of energy bands

Since all results depend on the differences = |e4 — eg| but not on the actual values

of €4 and ep separately, we can sel; = 0 for simplicity. One should stress that both
localization lengthd,, and lf\‘,’) are functions of the energ¥. For this reason, in our
numerical experiments we consider ensembles of states specified by the values of the energy
E in a small windowAE and by different realizations of random on-site energjesWe

choose the size of the energy window in such a way that for every chosen vabje of

the localization length,, is approximately constant inside this window (in all the cases

Al /ls < 0.06).

In order to study scaling properties of the localized eigenstates we have used the transfer
matrix method for infinite chains as well as the direct diagonalization of the Hamiltonians
that one associated with equation (1), for finite chains of 8izeTo find the localization
lengthl,, we have studied the asymptotic behaviour of the random matrix prddudt,,
whereM,, is defined through the relation

Sn"rl = MnE,, Mn = ( vf _Ol ) UV, = E — €y (14)

for the vector¢, = (x,, x,—1) with the matrixM,, known as the transfer matrix. Then the
localization length/,, is the inverse Lyapunov exponept the latter is evaluated as the
exponential decay rate of an initial vectsr.

1 1 u
=y =im (In [T, /|el|> . (15)
Although the Lyapunov exponemt for finite N depends on a particular realization of the
disorder, forN — oo it converges to its mean value. For the above calculations we have
used samples of length>510° for relatively large values ofz and up to 4x 10° for small
values ofep.

To reveal scaling properties of the localization length for finite samples, we have
computed two localization Iengtﬁﬁ) andl}vz) according to the relations discussed in the
previous section, with the normalization factdis,., and P,(f} given by equation (12) and
equation (13). In the computations of these lengths, the energy window was taken in the
centre of the spectrum, around the valle= ¢ /2 for g equal to 2, 1.8, 1.6, 1.2, 1, 0.8,

0.6, 0.4, 0.35 and for the fixed value ®f. The widths of the windows were numerically
chosen to provide a small change of localization length inside any of the windows. The
values ofB; and 8, were obtained by the averaging over an ensemble of random samples
of size N = 100-800 for the values afg cited previously. As a result, the total numbers

of eigenstates in the energy windows were more than 1000.

All of the data were fitted to the scaling functighy found for quasi-1D disordered
models [15]:

_ cqh

T 1+ e
In fact, this scaling relation is exact only fgr = 2; however, for other cases of small
values ofg, includingg = 1, it is very close to the correct one (see details in [15]).

By (16)
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Figure 1. Scaling of 8, as a function of the localization ratib = /./N for the RDM with

Q =05 andes = 0. The energie& are taken in an energy window centrediat= €3 /2 for
values ofep = 2.0; 1.8; 1.6; 1.2; 1.0; 0.8; 0.6; 0.4; 0.35. Smooth curves correspond to the
dependence (16) with, as a fitting parameter. (a) Scaling 8¢ with c; = 2.80. (b) Scaling
for B2 with ¢; = 1.55.

Numerical data reported in figure 1 give clear evidence of a scaling of the type described
by equation (16). The fitting parameterg are equal tac; = 2.80 andc, = 1.55. From
this figure one can see that the behaviouBpfis very different in the two limits of very
localized (B, <« 1) and extendedp, ~ 1) eigenstates. The dependence of equation (16)
has the remarkable property which can be seen in other variables:

Yq=In<1_ﬂqﬂq) X =In <l]°vo> (17)

which are more convenient when considering the whole region of both very localized and
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Figure 2. The scaling off1, B2 as a function ofs = I,/N in the variablesY; > and X (see
(17)) for the same values of the parameters as in figure 1. Straight lines (1) and (2) correspond
to expression (18) witla; = 1.05; b3 = 1 anday = 0.45; b, = 1 respectively.

extended states. Indeed, in these variables the scaling has an extremely simple form:
Y, =a,+b,X (18)

with b, = 1 anda, = In(c,). The data for the scaling in variablés X are presented in
figure 2. The fitting parametells; , are found to be quite close to 1, ik = 1.02 and

b, = 0.98; for this reason in figure 2 we pbt = b, = 1. The remarkable result is that

the above simple scaling relation holds over a very large region of the scaling parameter
A = l/N. According to the fit to the dependence of equation (18), the valyesare

a1 = 1.05 anda, = 0.45, which givesAa; , = a1 — ap = 0.6. It is very interesting that
these values ofi; , are the same as for the common Anderson model [22] in the centres
of energy bands. This fact is very important in establishing the link between the RDM and
Anderson models of finite size.

It is of special interest to relate the entropy localization Ierié%and the localization
length lff) associated with the inverse participation ratio. Their interdependence is shown
in figure 3. We see that they are approximately equal for very localized and very extended
states. Itis also clear thab is always less thafi; sinceP\?’ < P¢*", due to the definition
of equation (7). Using the definition of equation (16) one can find the relation betgeen
and B,:

iz =2 (19)

PTive-n Ta

4. Scaling of localization lengths near the critical energies

In the previous section we have shown that the scaling law of equation (16), found for
fully disordered 1D and quasi-1D models, also holds in our dimer model of finite size
when considering eigenstates in the centres of energy bands. In a sense, this property may
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Figure 3. A plot of 82 as a function of;. It is interesting to note that the fitting curve has the
same form (19) as the ones for the case8p$ plotted in figure 1 as a function of = I, /N.

be expected, since far from critical energies where the localization length diverges, the
eigenstates are assumed to be similar to that known for disordered models. The important
question is whether or not this scaling holds for all energies inside the band—in particular,
near the critical energieg., = €4, €p. Direct numerical computation of the localization
lengthl,, through the transfer matrix method is very difficult in this energy region due to
very weak convergence of Lyapunov exponents. For this reason, we have used the analytical
expression which was derived fég, near the critical energies in an approach developed
in [8]:

2sin’wo
08201
Here, the factorQ stands for the probability for the padéf, = ¢,.1 = €5 to appear, and
§ is defined by the relatiot = € — § ~ €5 [23]. We recall that in our cas@ = 1/2
ande, = 0 have been assumed for simplicity. From equation (20) one can find that if the
value ofep is far from the stability bordeE gz = 2, and the distanc& = 2 — ¢ is large
compared t&§ = ¢ — E, the localization length diverges as

lo(E) ~ 2cosug = E. (20)

2A
loo & @ SKAKL (21)
In the other limit case o, = 2 we have
loo ® — k1l A=0. 22
06 < (22)

It is interesting to note that the same expressions, equations (21) and (22), are obtained in
[17] by assuming that localization length is determined by the reflection coefficient from

a single paire, = ¢,,1, embedded in a perfect lead. It is of interest to check how accurate
estimates found in [8] and [17] are, and if one can apply them for any energy inside the
band.
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Figure 4. As in figure 1, but for energies close to the critical oif&, = €p), forg = 1 (a)
andqg = 2 (b). The values oép are taken agp = 1.8; 1.6; 1 .4; 1.2; 1.0.

To find the localization lengthg and/\? for finite samples of siz&v, we have used
the same approach as described in the previous section, by examining the eigenstates with
energies in a small energy windowE < 1072E,, near the critical energ¥,, = €. Yet,
since, in the region of critical energiels, (E) and thus also the localization properties of
eigenstates depend on the energy in a singular way (see equation (21) and equation (22)),
we took from the energy window only the eigenvector with the corresponding eigenstate
which is closer taE,, (but always different from itE # E.,.). This was a natural choice for
studying statistical properties of eigenstates with similar localization properties (i.e. just
the eigenstates near the totally extended one). The average vallﬁ-ﬁ?swrﬁre obtained by
statistically averaging over an ensemble of more than 3000 samples a¥ sizd 00—800
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with different pair-correlated disorder. The results are reported in figure 4 together with a

fit to equation (16). One can see a quite good scaling of the form of equation (16), in spite

of fluctuations which are much larger in this energy region compared to those in the centres
of bands. The fitting coefficients; = 2.20 andc, = 1.06 are slightly less than those in

the band centres. This fact may be explained by the approximate character of the analytical
expression in equation (20) (one should also note that for the valugs\ry close to the

limit g, = 1 the computational errors are very large).

8 T T T T
x
Y,
7 L .
6 = .
o N=100
o N=150
st o N=200 | ]
& N=300
o N=400
i N=500
x N=700
4r « N=800 | 1
i i 1 i
4 5 6 7

Figure 5. As figure 2, but for the parameters of figure 4. Straight lines (1) and (2) correspond
to expression (18) witluy = 0.75; b1 = 1 andaz = 0.08; by = 1 respectively.

In figure 5 the same data are represented in the variables of equation (17), with the fit
corresponding to the dependence given by equation (18). It is interesting that in spite of
a slight difference for the coefficienty = 0.75 anda, = 0.08 in comparison to those
found in the centres of bands, the shu; , = a; — a, = 0.67 remains almost the same
(compared to 0.6).

5. Summary

We have studied a 1D tight-binding model with binary on-site disorder that is randomly
assigned at every pair of sites. For such a model we know that there exist two special
energiesE,., at which transparent states appear [3, 6, 7, 8]. For other energies—but close
to critical ones—the localization length is very large, leading to nearly transparent states
that are of great importance in the conducting properties of finite samples. This property is
quite different from that of genuine disordered models of Anderson type.

Our numerical study of random dimer models of finite size deals with the scaling
properties of the eigenstates. This study was motivated by the remarkable scaling law that
has been found for different 1D and quasi-1D models, both dynamical (the kicked rotator
on a torus [13, 14]) and disordered (1D Anderson and Lloyd models [21, 22] and quasi-1D
models [15, 20]). These latter results indicate that eigenstates in finite samples with disorder
have generic properties, regardless of the details of the disorder.
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The main result of our computations is that scaling properties of eigenstates of finite
dimers are of the same type as for the disordered models mentioned above in spite of the
existence of nearly transparent states. In particular, both the entropy localization length and
the localization length from the inverse participation ratio normalized in the proper way
follow the universal scaling law of equation (16).

The scaling relation of equation (16) can be also represented in a very intriguing form
[21, 22, 24]:

r _ 1.1
19 E) 12 E) 10 E)

(23)

which still has no physical basis. In equation (2&73(6, E) represents the localization
length for a finite sample and finite disordél! (e, E) is the localization length for an
infinite sample with the same disorder aliﬂ(o, E) is the localization length for a finite
sample with zero disorder. One should stress that all three localization lengths are defined
in the same way, given through expressions of equations (6) and (7). One can see that
the form of equation (23) is parameter independent; the same form holds also for the 1D
Anderson and Lloyd models (see [21, 22]).

In our numerical study the energy window has been chosen in the middle of the spectrum
as well as close to the critical energy, giving the same scaling form—equation (16). The
slight difference in the coefficients, for these two energy regions seems to indicate
that the analytical expression equation (20) needs some correction related to an additional
dependence on the energy when the latter is not close enough to the critical one. Our results
indicate that the same scaling is expected to hold for other values of the energy inside the
band. One should note that the scaling given by equation (16) (or, equally, equation (23))
can be used to check the accuracy of expressions for the localization lgngthregards
the dependence of the parametétsand ¢, if for some values of these parameters the
scaling functiong, is found with a high accuracy.

It is of interest to check the scaling behaviour of localization lengths corresponding
to the higher momentg > 3 in equation (6). Analytical treatments [15] for disordered
models have shown that the scaling law given by equation (16) holds approximately for
higher moments also. The correct expressiondgir) is known only in the limit case of
very localized(x « 1) and extendedx > 1) states. It has the same form as equation (18)
with b, = 1 but with different values ofi, in these limits (see details in [15]). On the
basis of our results foy = 1, 2, it is quite natural to expect that for the dimer model
the correspondence to the analytical predictions [15] should also hold for higher moments;
however, this question remains open. One should note that fluctuations of localization
lengthsl, increase very substantially with increasipgthis leads to serious computational
problems.

Finally, we should comment that the results obtained in the present work can be
generalized to cases with correlation blocks larger than dimers, namdipcks with
m = 3,4,5,.... Inthese more general cases the following surprising result holds: given
an arbitrary distribution of correlated blocks wiglvenlength, i.e. an arbitrary distribution
of dimers, tetramers, hexamers, octamers, etc, with the same enethgt populate a
lattice with sites that have some other energy value, there is always a resonant energy
E.. = € that corresponds to a delocalized state. This result can be easily deduced from
the general expressions of [8]. On physical grounds, we expect the localization properties
of the eigenstates of this system to follow similar scaling laws to the ones derived in the
present work.
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